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1. ETAS model in CSEP projects

2. “Offline optimization, online forecasting”
Realization of space-time ETAS model in the
CSEP projects.

3. Output examples of the ETAS model in the
CSEP project.
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= Seismicity rate = "background" + “Triggered seismicity":
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= Time distribution:
the Omori-Utsu law




Space-time ETAS model

e Conditional intensity
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e Likelihood function
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 Time varying seismicity rate (conditional intensity or
stochastic intensity)
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Contribution from
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 Time varying seismicity rate (conditional intensity or
stochastic intensity) at event |

Contribution from
background seismicity

Pr{event ] is from background}
9, = H(X;5 Y5)
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 Time varying seismicity rate (conditional intensity or
stochastic intensity)
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time independent background
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 Time varying seismicity rate (conditional intensity or
stochastic intensity)

How to estimate
time-free total

seismicity seismicity? parameters?
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Kernel, spline,
tessellation,
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How to estimate How o estimate
background clustering
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 Time varying seismicity rate (conditional intensity or
stochastic intensity)

How to estimate
time-free total

How to estimate How o estimate

seismicity background clustering
seismicity? ?
A(X V) parameters:
1 Maximum likelihood

Kernel functions,
spline, tessellation,
histogram, ...

estimate if background
seismicity p is known
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 Time varying seismicity rate (conditional intensity or
stochastic intensity)
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background clustering
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 Time varying seismicity rate (conditional intensity or
stochastic intensity)

How to estimate
time-free total

How to estimate How o0 estimate

seismicity background clustering
seismicity? parameters?
AX, YN
L . 1 Pr{event ] is from backg;round}
Kernel fuhction, . . o = HO5Y,
Kernel function, spline, FAL XY

spline,
tessellation,
histogram, ...

«-----» tessellation, histogram, ..., with
each event weighted by ¢,
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 Time varying seismicity rate (conditional intensity or
stochastic intensity)

AL, X, Y):w"‘ZK(mi)g(t_ti)f(X_Xiay_Yiami)
}
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Kernel Kernel functions with each event

functions nghtegjpj

. 1
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Solution—estimating parameters and
background rate simultaneously

Iterative algorithm:
1. Assume an Initial background rate.

2. Using MLE to estimate parameters in the clustering
structures.

3. Using the assumed background and estimated clustering
parameters to evaluate ¢; .

. Using ¢, to get a better background rate.
. Update the background rate by this better one.

6. Go to Steps 2 to 5 until results converge.

O B S

®;. Estimate of probability that event j is of background



 Generate the background catalog with the estimated
background rate, recorded as Generation O.

For each event, in the last simulated generation,
generate its children, with their occurrence times,

locations and magnitude from the p.d.f.s as assumed in
the model, where the number of children is a Poisson

r::nnlnm \lar|ah|a w/ith o mean nfthoa nrn d 'C 1 \1
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function.

Ly

Repeat last step until no more new event is generated.
Return with all the events in all generations




Diagram of CSEP ETAS implementation

Input module

Earthquake catalog
+

Historical catalog

Input controls:

1. Polygon region
for model fitting
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Example 2: Retrospective forecast of the Tokachi-Oki

40
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Data: JMA catalog,
121-155E, 21-48N,
Depth 0-100km, M>4.0,
1965-1-1 to 2003-9-23
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Example 2: Retrospective forecast of the Tokachi-Oki Earthquake

Time independent
total seismicity rate

Background
seismicity rate

Unit: events/day/deg”2




Example 2: Retrospective forecast of the Tokachi-Oki Earthquake
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(1) Contingency-table based test for Deterministic:
Yes/No prediction :

Predict eqgs a+b
Predict no eq c+d

Column sum N=a+b+c+d

Hanssen-Kuiper skill score, or R-score, namely
! b
a+d b+c

HK




Scoring alarming-level type of
predictions

Molchan’s error diagram (Molchan 1990, 1991, 1997, 2003;
ROC curve):

usually for alarming-level based forecasts
a: number of successful forecasts of o

b: number of false alarms;

c: number of successful forecasts
of non-occurrence;

d: number of failures to predict.

d a+b
= ~7T =
a+d a+b+c+d




Gambling score (1)

Each time the forecaster make a prediction, he
oets 1 point of his reputations. If he fails,
ne looses this point; if he wins, he should
oe rewarded fairly.

Question: How to fairly reward the forecaster
for a success?




Question: How to reward the forecaster for a success

fairly?
Answer: G={=p)/ P

P, : prob. given by the reference model

that the prediction is correct

Return for each prediction

Earthquake occurrence No

Forecaster predicts Yes -1

Forecaster predicts No G

no

Forecaster predicts Yes (1-p)G,,-p
with prob. p




forecasts

Information score (likelihood ratio, Vere-Jones
1998):

(0)

IZZ X.log Pi
i P;

p.:prob. of earthquake occurrence given by model;

p."”: prob. given by baseline model;

X.: =0,1f no event occurs;=1 otherwise.




Example 2: Retrospective forecast of the Tokachi-Oki Earthquake

observed daily numbers
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Temporal variation of forecasted daily numbers of earthquake during
2003-09-24 to 2003-10-22.




Example 2: Retrospective forecast of the Tokachi-Oki Earthquake

O~ Scoreovereventcells
«sof** Score over non-eventcells

e=@== Total Score

Daily information gains against the Poisson model




Conclusions

The space-time ETAS model has been implemented as an “off-line
optimization and online forecasting” scheme in the Japan and SCEC CSEP
projects. It consists of four components: (1) off-line optimization; (2) a
simulation procedure; (3) a smoothing procedure.

Using the ETAS model, | have made retrospective experiments on 1-day

forecasts of earthquake probabilities in the Japan region before and after
the Tokachi-Oki earthquake in September 2003, in the format of contour
images.

These forecasts were test against the reference model, the Poisson
process which is stationary in time but spatially inhomogeneous. As
expected, the forecasts based on the ETAS model catch the temporal and
spatial features of the aftershock sequence, and the ETAS model performs
better than the Poisson model.

This presentation is partially based on Zhuang, 2011, EPS



Thank you.




