PHASE TRANSITION IN TRAFFIC JAM EXPERIMENT

Shin-ichi TADAKI:只木進一

Saga University

COLLABORATORS

- o Macoto Kikuchi :菊池誠(Osaka U.)
- Minoru Fukui :福井稔(Nakanihon Automobile Coll.)
- o Akihiro Nakayama :中山章宏(Meijo U.)
- o Katsuhiro Nishinari : 西成活裕(U. Tokyo)
- o Akihiro Shibata :柴田章博(KEK)
- o Yuki Sugiyama :杉山雄規(Nagoya U.)
- Taturu Yosida :吉田立(Nakanihon Automobile Coll.)
- o Satoshi Yukawa :湯川諭(Osaka U.)

ON TRAFFIC FLOW, WE HAVE BEEN CONDUCTING RESEARCHES

- Microscopic models and simulations
 - CA models
 - Optimal velocity (car-following) model
- Analyses of observed data from highways
 - Tomei and Meishin highways
 - Statistical analyses
 - Fundamental diagrams
 - Reverse lane usages
 - Time sequence
 - Long range correlations
- Experimental studies of traffic jam
 - Today's presentation

VEHICLE TRAFFIC FLOW

- Familiar phenomena in daily life
 - Two features: free flow and jam

• Free flow

- Cars run with their desired speed
- Homogeneous
- Traffic jam
 - Not homogeneous slow flow
 - Jam cluster: sequence of motionless (slow) cars

MISUNDERSTANDING OF THE ORIGIN OF JAM

• Fake origins

- Bottlenecks such as tunnels
- Slow car leading a sequence of cars
- If the density is low, these can not lead to traffic jam.
- These induce the density increase.
- Observational facts
 - Free flow and jam separated by some density
 - Jam clusters propagate upstream

OBSERVATIONAL FACTS:1

• Fundamental diagram

OBSERVATIONAL FACTS:2

• Jam cluster propagates upstream

SIMPLEST TRAFFIC FLOW MODEL (R184)

THEORETICAL UNDERSTANDING

- Example (Simplest model): Wolfram's rule-184
 - Jam cluster propagates upstream

THEORETICAL UNDERSTANDING

• Example (Simplest model): Wolfram's rule-184

• Phase transition at $\rho_{\rm C}=1/2$

© Shin-ichi Tadaki (Saga University)

PHYSICAL UNDERSTANDING

- Emergence of traffic jam
 - Phase transition controlled by density
- Low density
 - Smooth and homogeneous
- High density
 - Homogeneous flow becomes unstable
 - Inhomogeneous
 - Low density area : free running
 - High density area : jam cluster
 - Jam cluster propagate upstream

ORIGIN OF TRAFFIC JAM

• Bottlenecks and slow cars are not the origin

• Human factors are not important

• Traffic jam without any bottlenecks

- High density flow is unstable
- Small fluctuation grows exponentially

• Traffic jam \Leftrightarrow phase transition

PURPOSE OF THE EXPERIMENT

• Validate physical understanding

- High density traffic flow is unstable
- Traffic jam emerges without bottlenecks

• Estimate the critical density

• The density as the control parameter

THE EXPERIMENT

- Circuit with 50 m radius in Nagoya Dome (2 days)
 50 TOYOTA Vitz
 - 50 TOYOTA Vitz

• High resolution positioning using laser scanner

SPACETIME DIAGRAM

- Average speed decreases with # of cars.
- Fluctuation becomes large for high density flow.

FUNDAMENTAL DIAGRAM : FREE FLOW

FUNDAMENTAL DIAGRAM : INTERMEDIATE

FUNDAMENTAL DIAGRAM : HIGH DENSITY

SUMMARY

- Experiment at Nagoya Dome
 - Spontaneous emergence of traffic jam without bottlenecks
 - Phase transition between free flow and jam
- Strong supports for physical viewpoints of traffic flow
 - Exclusion effects
 - Delay in response
 - Main contribution is not human factors

FUTURE PLANS

• Estimating parameters in Optimal Velocity Model

• Optimal Velocity Model

$$\frac{d^{2}x}{dt^{2}} = \alpha \left[V_{\text{optimal}} \left(\Delta x \right) - \frac{dx}{dt} \right]$$
$$V_{\text{optimal}} \left(\Delta x \right) = v_{\text{max}} \left[\tanh \left(\frac{\Delta x - d}{w} \right) + c \right]$$

21

© Shin-ichi Tadaki (Saga University)