Empowering Internet-tv-based e-learning in rural villages with delay tolerant connectivity:

Using frequent visitors as message ferries Teerawat Issariyakul

Acknowledgement

Rural areas in thailand

Sometschoitles(espifilSultyekapelserbyKeansanaburi,

Picture Credit: vistaimage.net

Rural areas in thailand

- Tele-Centers and viability
 - Donation of equipment One time
 - Setting up the Internet Running cost
- Local villagers have no intention to pay for monthly Internet fee
- Telecenters become a burden, not a facility

Picture Credit: vistaimage.net

e-learning through ip-tv

Delay/Disruption tolerant network

- Intermittent/Unreliable Connectivity
- Expensive data transmission cost
- Extremely long delay is acceptable
 - Realtime IN Non-realtime DTN
 - Examples?

E-learning in rural areas and DTN

DTN Characteristics	Rural Areas	
 Intermittent/Unreliable Connectivity Expensive data transmission cost 	The villagers cannot afford to pay for monthly Internet fee	Internet
- Extremely long delay is acceptable	MoE learning contents are not updated very frequently	Main Content Supplementary Content Activities Ministry of Education

Inter-planetary network (IPN)

Intermittent connectivity

Earth station

Orbital Satellite

Remote Communicator

- Bandwidth is expensive, but the delay is tolerable
- Store and forward
- Multi-hop: Electronic & Physical

ICT Development in rural areas

DAKNET

- Installation of Kiosks in the rural areas
- Use buses equipped with mobile access points to carry info. to the city.
- Example info.
 - Public Land Records
 - Emails
 - Etc.

DTN and e-Learning

- The local village is quite hard to reach
- But there will be frequently visitors (e.g., traveling postmen)
- Use the visitors as message ferries

DTN and e-Learning

Well connected cities

key questions

- How well will the DTN perform?
- Throughput = ?
- What are the key factors, which affect the throughput? How much effect they have on throughput?

Modeling the mailman

- The mailman travels with a content delivery device
 - Mass storage
 - Wifi Transceiver
 - Automatic transfer

- Everyday, the mailman delivers letters and packages from the city to the rural village.
- The mailman returns to the city everyday.

Modeling the mailman

• At the city:

- The device downloads new learning contents
- New contents are created according to Poisson distribution
- The mailman stays in the city (downloadable area) with a random amount of time
- On the route: The mailman spends a random amount of time traveling between the city and the village
- At the village:
 - The device automatically upload the content to the local station
 - The upload time for one byte is exponentially distributed
 - The mailman spend a random amount of time traveling from the village to the city

Modeling the mailman

- Two dimensional Markov Chain
 - Dim-1: Location =
 {C(ity),(on
 the)R(oute),V(illage)
 }
 - Dim-2: Buffer size in bytes

Two key questions

 What's the condition where the queue does not grow to infinity

$$rac{\lambda_{RC}}{\lambda_R}\lambda_Irac{1}{\lambda_C}<rac{\lambda_{RV}}{\lambda_R}\lambda_Orac{1}{\lambda_V}.$$

• What is the throughput

$$T = \lambda_I \left(\frac{\frac{\lambda_{RC}}{\lambda_R} \frac{1}{\lambda_C}}{\frac{1}{\lambda_R} + \frac{\lambda_{RV}}{\lambda_R} \frac{1}{\lambda_V} + \frac{\lambda_{RC}}{\lambda_R} \frac{1}{\lambda_C}} \right)$$

Experiment setup

CASE-STUDY SCENARIOS

numerical result

- Max. input rate under which the system still sustain
- Visiting the city ↑
 No need to download a lot at a time

Experiment setup

Infinite buffer size:

$$T = \lambda_I \sum_{k=0}^{\infty} p_{k,C} = \lambda_O \sum_{k=1}^{\infty} p_{k,V}$$
$$= \frac{\lambda_I \lambda_V \lambda_{RC}}{\lambda_V \lambda_C + \lambda_C \lambda_{RV} + \lambda_V \lambda_{RC}}$$

• Max. throughput is achieve for moderate value of λ_{RC}

Summary

- Developing country
- Intermittent connectivity
- Inability to afford Internet monthly fee
- Delay Tolerant Network: Using mailmen as message ferries
- Mathematic modeling
- Increasing data rate in the city does not necessarily be beneficial

thank you for your attention