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Introduction 
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Information circulation in Cyber-Physical Systems 
 

Data Mining 

Feedback 
Control 

Information 
Collection 

Data 
sharing 



Data Sharing Example 

• Suppose a hospital has some person-specific patient data 
which it will publish such that: 
– Information remains practically truthful and useful 
– Identity of an individual record cannot be determined 
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Identifier Quasi-identifier (QI) Sensitive Attribute (SA) 
Name Country Gender Disease 
Allen U.K. M prostate cancer 
Bob Spain M diabetes 

Calvin Hungary M heart disease 
David Poland M diabetes 
Eve U.S. F HIV 

Grace Canada F HIV 



Records Linkage Risk 
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Most promising solution: k-anonymity (Sweeney, 2002) 

DOB Gender Zip code Disease 

1/21/76 Male 53715 Heart Disease 

4/13/86 Female 53715 Hepatitis 

2/28/76 Male 53703 Bronchitis 

1/21/76 Male 53703 Broken Arm 

4/13/86 Female 53706 Flu 

2/28/76 Female 53706 Hang Nail 

Name DOB Gender Zip code 

Beth 1/10/81 Female 55410 

Carol 10/1/44 Female 90210 

Dan 2/21/84 Male 02174 

Andre 1/21/76 Male 53715 

Ellen 4/19/72 Female 02237 

Hospital Patient Data Vote Registration Data 

L. Sweeney. K-anonymity: A model for protecting privacy. International Journal on Uncertainty 
Fuzziness and Knowledge based Systems, 2002 

Andre has heart disease 



k-anonymity 

• Definition: A data set is called k-anonymity, if and only if each 
record on its QI appears at least k times. 

• Methods: Generalization, Suppression 
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Example: 3-anonymity 

DOB Gender ZIP Disease 

76 Male 537** Heart Disease 

76-86 Female 537** Hepatitis 

76 Male 537** Brochitis 

76 Male 537** Broken Arm 

76-86 Female 537** Flu 

76-86 Female 537** Hang Nail 



Classification of Generalization Method 
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• A group of records on a QI attribute mapping to the same domain 
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Age ZIP Disease 

71 103 Heart Disease 

41 210 Hepatitis 

19 090 Bronchitis 

18 400 Broken Arm 

67 405 Flu 

28 550 Hang Nail 

72 890 Heart Disease 

2-anonymity 

NP-hard 



• Mondrian—A greedy algorithm based on Multi-dimensional local 
Generalization Model 

• More efficient performance and higher-quality results than Optimal 
Single-dimensional Global Generalization 

• Drawbacks:  
– large group size (upper bound is 2k-1) 
– Equally partition cause utility loss for non-uniform dataset 

 
 

 

Issues for Existing Algorithms 
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Spatial Representation Model 
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• A dataset T with n records and m attributes can cast as n dots distributed 
in a m-dimensional Euclidean space 

• Unified measurement (spatial distance) for both numerical and categorical 
attributes (dimensions) 
– Numerical attributes  such as Age, Salary can be normalized with [0,1] 
– Categorical attributes such as Nationality, Profession can also be numerated 

and normalized 
 
 
 
 
 
 
 

 
• Higher distance means higher generalization cost, i.e. information lost 

people 

North 
America 

U.S. Canada … 

Asia 

China Japan … 

… 

… 

Cardinality=5 

Normalized distance between two Nationality is defined as one of cardinality their same parent node  

Cardinality=1 



Input: original Table T, hierarchies on categorical attributes 
Output: a k-anonymous table T’ 
Initialization: every record in T forms a single-record       , a merge set                  , 
                         a final equivalent class set  
WHILE             {  
    FOR each     in      { 

Scan all neighbor equivalent class to find a      such that                         is the largest, 
Merge       into     , and delete      from       
IF 
    Split_Flag=1 
    WHILE Split_Flag=1{ 

 Scan      to find a record     such that                           is the largest,  
 IF 

    Split     form     , and move     to  
 ELSE 
     Move      to  
 } 
} 
Generalize all equivalent classes in set      and output the table T’ 

Merge and Split Algorithm 
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Simple Example 
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Metrics for Evaluation 
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• Normalized Information Loss Metric 
 

 
• Privacy Gain Metric 

 
 

• Anonymization Quality Metric 
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Ei : Equivalent class i :
An : At tribute n:
T : Orginal Dataset :



Preliminary Results 
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Experiment Setup: 
1000 record, with 2 quasi-attributes, uniform distribution in each attribute 
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1. Our algorithm achieve higher utility since all the size of anonymized group are 
more close to k. 

2. For non-uniform dataset, our proposed algorithm can provide flexible 
anonymized group size. 



Conclusions 
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• Proposed algorithm achieves better quality of output dataset 
in terms of utility and same efficient as Mondrian 

• Also suitable for real-world non-uniform dataset 
• Compatible with extra improvement of k-anonymity such as l-

diversity 
• Future work is to test more real-world datasets, and add more 

features as l-diversity 
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Thank you! 
 
Any questions? 
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