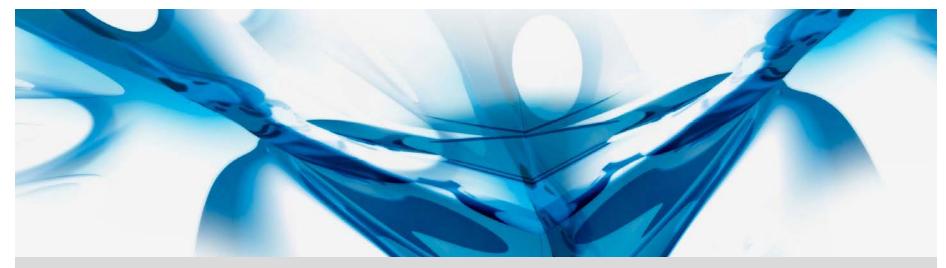


Human and Social Data Sharing for Research and Education



Utility-enhanced k-Anonymity Algorithm for Non-Uniform Datasets

ISSI 2012, Tokyo

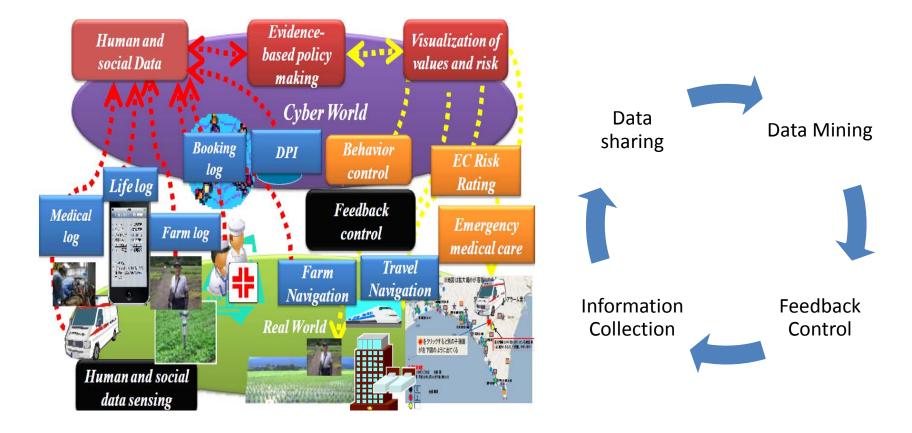
Lei Zhong, Ph. D. Transdisciplinary Research Integration Center (TRIC), National Institute of Informatics (NII), Japan Email: lei@nii.ac.jp

Outline

- Introduction
- Preliminaries
- Spatial Representation Model
- M&S Algorithm and Some Results
- Conclusions

Introduction

Information circulation in Cyber-Physical Systems



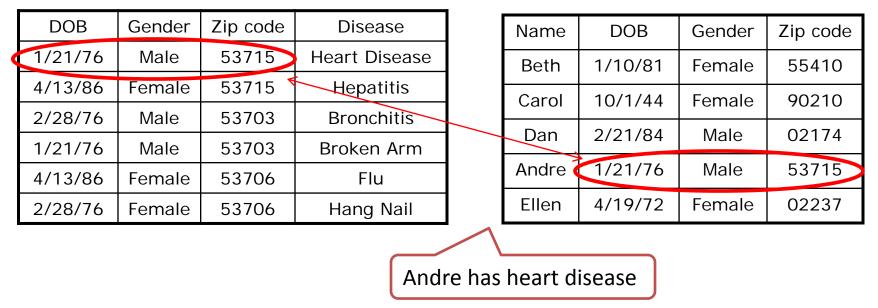
Data Sharing Example

- Suppose a hospital has some person-specific patient data which it will publish such that:
 - Information remains practically truthful and useful
 - Identity of an individual record cannot be determined

Identifier	Quasi-identifier (QI)		Sensitive Attribute (SA)
Name	Country	Gender	Disease
Allen	U.K.	М	prostate cancer
Bob	Spain	М	diabetes
Calvin	Hungary	М	heart disease
David	Poland	М	diabetes
Eve	U.S.	F	HIV
Grace	Canada	F	HIV

Records Linkage Risk

Hospital Patient Data



Vote Registration Data

Most promising solution: k-anonymity (Sweeney, 2002)

L. Sweeney. K-anonymity: A model for protecting privacy. International Journal on Uncertainty Fuzziness and Knowledge based Systems, 2002

k-anonymity

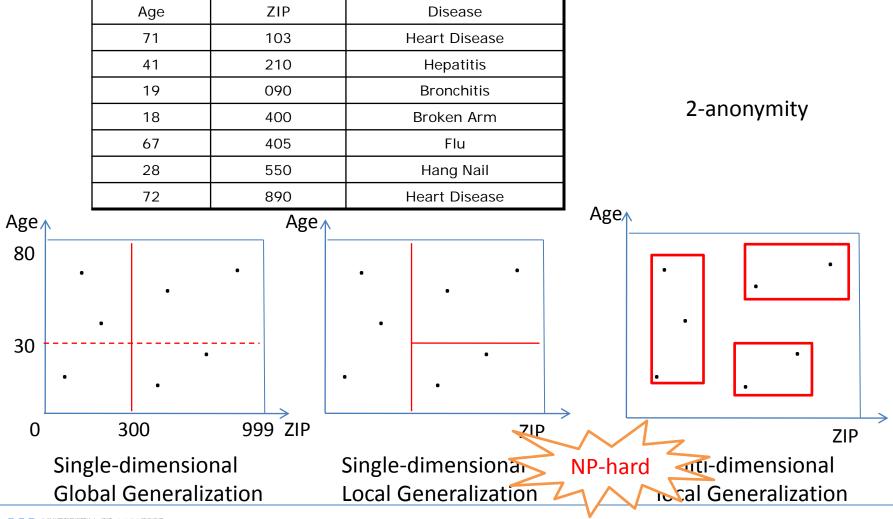
- *Definition*: A data set is called k-anonymity, if and only if each record on its QI appears at least k times.
- *Methods*: Generalization, Suppression

DOB	Gender	ZIP	Disease
76	Male	537**	Heart Disease
76-86	Female	537**	Hepatitis
76	Male	537**	Brochitis
76	Male	537**	Broken Arm
76-86	Female	537**	Flu
76-86	Female	537**	Hang Nail

Example: 3-anonymity

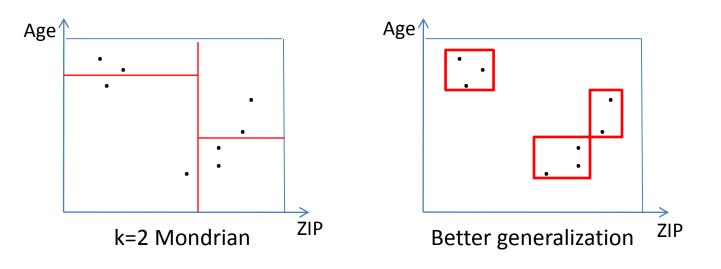
Classification of Generalization Method

• A group of records on a QI attribute mapping to the same domain



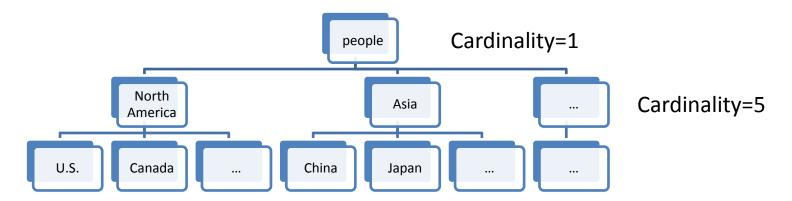
Issues for Existing Algorithms

- Mondrian—A greedy algorithm based on Multi-dimensional local Generalization Model
- More efficient performance and higher-quality results than Optimal Single-dimensional Global Generalization
- Drawbacks:
 - large group size (upper bound is 2k-1)
 - Equally partition cause utility loss for non-uniform dataset



Spatial Representation Model

- A dataset *T* with *n* records and *m* attributes can cast as *n* dots distributed in a *m*-dimensional Euclidean space
- Unified measurement (spatial distance) for both numerical and categorical attributes (dimensions)
 - Numerical attributes such as Age, Salary can be normalized with [0,1]
 - Categorical attributes such as Nationality, Profession can also be numerated and normalized



Normalized distance between two Nationality is defined as one of cardinality their same parent node

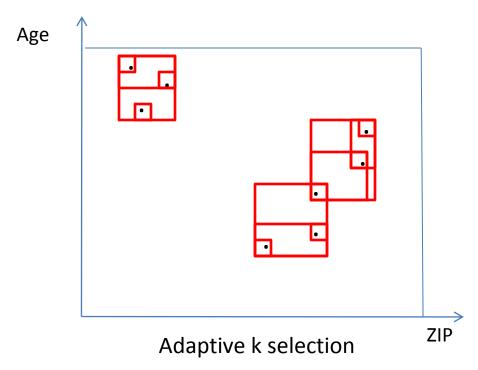
• Higher distance means higher generalization cost, i.e. information lost

Merge and Split Algorithm

```
Input: original Table T, hierarchies on categorical attributes
Output: a k-anonymous table T'
Initialization: every record in T forms a single-record E_i, a merge set M = [E_i],
              a final equivalent class set E = ;
WHILE M & ; {
  FOR each E in M {
     Scan all neighbor equivalent class to find a E^{C} such that IPG(E [ E^{O}) is the largest,
     Merge E^{c} into E, and delete E^{c} from M
     IF | PG(newE) + | PG(oldE)
       Split Flag=1
        WHILE Split Flag=1{
           Scan E to find a record \mathbf{f} such that IPG(E \, frg) is the largest,
           IF IPG(E \circ frg) > IPG(E)
             Split r form E , and move r to M
           ELSE
             Move E to E
           }
}
```

Generalize all equivalent classes in set E and output the table T'

Simple Example



Metrics for Evaluation

- Normalized Information Loss Metric $IL_{E_{i}} = \frac{\swarrow_{n}(M \operatorname{ax}_{E_{i}}^{A_{n}} \circ M \operatorname{in}_{E_{i}}^{A_{n}})}{iTi}$
- Privacy Gain Metric

$$PG_{E_i} = 1_{\circ} \frac{1}{jE_i j}$$

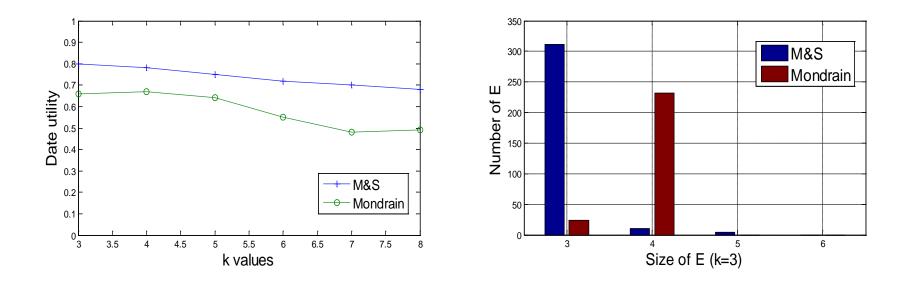
• Anonymization Quality Metric

$$IPG_{E_i} = (1_{\circ} IL_{E_i}) J PG_{E_i}$$

- E_i: Equivalent class i:
- A_n: Attribute n:
- T: Orginal Dataset:

Preliminary Results

Experiment Setup: 1000 record, with 2 quasi-attributes, uniform distribution in each attribute



- 1. Our algorithm achieve higher utility since all the size of anonymized group are more close to k.
- 2. For non-uniform dataset, our proposed algorithm can provide flexible anonymized group size.

- Proposed algorithm achieves better quality of output dataset in terms of utility and same efficient as Mondrian
- Also suitable for real-world non-uniform dataset
- Compatible with extra improvement of k-anonymity such as ldiversity
- Future work is to test more real-world datasets, and add more features as *I*-diversity

Thank you!

Any questions?

