災害時の医療継続に向けて

災害に強い電子カルテ

高知大学 医学部附属医学情報センター

畠山 豊，片岡 浩巳

- カルテ情報の保全
- 複数の拠点でのクラウド化
- 国立大学病院間における医療情報システムデータのバック アップ対しの構築（平成25年度中に稼働開始）
- PHRの構築
- 震災直後における患者データ利用
- 通信インフラの確保

前提

どこで医療サービスを受けても同じ品質の履歴が生成•蓄積される

PHRで検査データも統合される時代に

- 初期診療，急性期診療，慢性期診療の役割分担
- 急性期は平均在院日数の短縮 \rightarrow 複数の病院に受診

検査値の精度管理が重要に

- 各検査室のデータの精度
- 施設間差
- 基準値，臨床判断値の共有化
- 長期的精度管理
- 時系列変化
- 症例の蓄積 \rightarrow 過去のデータは重要

電子カルテ統合に向けて

－内閣官房，厚生労働省，経済産業省，総務省，国を挙げての大構想

コードの標準化は？過去の検查データの標準化は？
検査コードは問題だらけ

精度管理手法の分類

リアルタイムQC （実時間精度管理）	経日的精度管理 （短期的精度管理）	経年的精度管理 （長期的精度管理）
検量線の管理	X－R管理図	標準物質による評価
反応過程チェック	X－Rs－R管理図	コントロールサーベィ
検体情報チェック	マルチルール管理	技能試験
上下限範囲チェック	累積和管理図	基準値との比較評価
項目間相関チェック	双値法Youden図	正常者平均法
前回値チェッ	正常者平均法	
X—Rs管理図		

－認証標準物質の測定 －外部精度管理

年に数回など課題山積
日本臨床検査自動化学会会誌Vol． 38 Suppl．2より

検査値の施設間誤差に対する対策

校正物質の標準化とトレーサビリティの確保

外部精度管理によるバラツキの実態

－比較的安定とされる乳酸脱水素酵素（LD）の事例

臨床検査における精度保障の概要と課題

トレーサビリティの確保
コミュータビリティの確保

外部精度管理

－年に数回しか確認できない －膨大な労力とお金 －評価後の対処法の確立
（これが臨床側には大問題となる）

内部精度管理

- 短期ロットのつぎはぎ問題
- 異なるロットの並行測定運用を行っている？

血液，生理，病理などの人為的判断による物は，もっと客観的な指標が必要か？

電子カルテの3原則による束縛

－真正性

正規化補正は改

 ざんではない- 書換，消去•混同，改ざんを防止すること。
- 作成者の責任の所在を明確にすること。
- 見読性
- 必要に応じ肉眼で見読可能な状態にできること。
- 直ちに書面に表示できること。
- 保存性
- 法令に定める保存期間内，復元可能な状態で保存 すること。

随時血糖と年齢の 30 年間の分布

連続性が維持できていることの検証法

測定法変更に伴う長期時系列検査データの整備

乳酸脱水素酵素（LD）の30年間にわたる集団分布（年月毎に度数分布）

切り替え時同時測定した結果から換算係数を算出

測定法，分析装置変更時の手順 （正確度のミスが発見されても）

測定法変更に伴う運用プロトコルの基本
実測値による換算係数の導出と，係数の管理

検査部からのアナウンスの例

記

1．変 更 開 始 日：平成13年5月1日（火）より
2．現行法と新法の相関：別紙参照

新基準値は，職員検診および他の大学等の報告例を総合的に比較して決定し
ました。
＊：y－GT，LDおよびALPは従来より測定值が大きく異なりますのでご注意下さい。
4．I MIS \qquad面：時系列でテータ参照する場合，新旧で項目コード が異なりますのでご注意下さい。

それでも，想定外は発生する

AKIの診断基準は？

- 48時間以内で血清クレアチニン値の変動
- $0.3 \mathrm{mg} / \mathrm{d}$ 以上上昇 $\|$ この基準の根拠は，測定許容誤差
- 基礎値の1．5倍上昇 を超える変動でも病院死や1年以内 の死亡の危険因子であったアウトカ －尿流量の減少 ムによる
－ $0.5 \mathrm{ml} / \mathrm{Kg}$ 以下（6時間）

CREの事例

ただし，患者層を考慮せず，全データの分布図

検査値の連続性を保つためには

- 未来に向けての対策
- 実測値による換算係数の導出
- 外部十内部精度管理データで補正
- パッチワーク方式等の地域外部精度管理データを取 り込む
- ヒト由来サンプルでなければうまく行かないため。
- 過去のデータに対する対策
- データの分布を用いて変換
- これしかデータが残っていない

方法間，施設間変動の正規化

測定法間の変動
方法1 方法2 方法3

病院1 病院2 病院3施設間の変動

過去のデータには，補正するためのデータが残っていない。 $\begin{array}{ll}\text { 総変動 } & \begin{array}{l}\text { 他の病院に受診しても同じ } \\ \text { 基準で診断可能 }\end{array}\end{array}$

ただ集めたたこけのDWHでは
多くの誤差を含んだデータとなる
患者群（準健康患者群）の分布

正規分布への変換

Box－Cox変換によるべき乗係数の導出分布の偏り \rightarrow べき乗変換で正規分布に

分布形の正規分布への変換

BOX－COX変換の原理

$$
\begin{aligned}
& x: \text { データ } \\
& \lambda: \text { べき乗値 }
\end{aligned} \quad\left\{\begin{array}{c}
\frac{1}{\lambda}\left(x^{\lambda}-1\right), \lambda \neq 0 \\
\log (x), \lambda \neq 0
\end{array}\right.
$$

各べき乗値における正規性

べき乗による正規分布への変換

母集団の分布から補正係数を推定

新旧同時測定してない施設向け検査データの正規化技術の開発
目的：蓄積された膨大なデータの分布から，変換のための係数を求める長期の検査データ

正規化処理結果

AST（GOT）では季節内変動のため要注意

年月

トランケーション平均法適用の注意点

- 対象の束䋥要
- 性差，年齢差で分布が変化
- 季節内変動がある検査項目
－AST，ALT，ALP， $\mathrm{VGT}, \mathrm{ChE}$ ，T－Bil など

検査項目により性差，年齢差あり

集団の偏りによる誤差に配慮要

GLUの性差，年齢差

CREの性差

分布パターン情報からデータの標準化を可能とする

ある年齢層のデータを取得し，その分布パターンから，補正係数を求め

まとめ

- 検査精度の管理
- 精度，正碓性
- 蓄積データに基づく誤差補正
- 施設間補正
- 他の影響：性差，年齢差，測定季節
- システム構築

