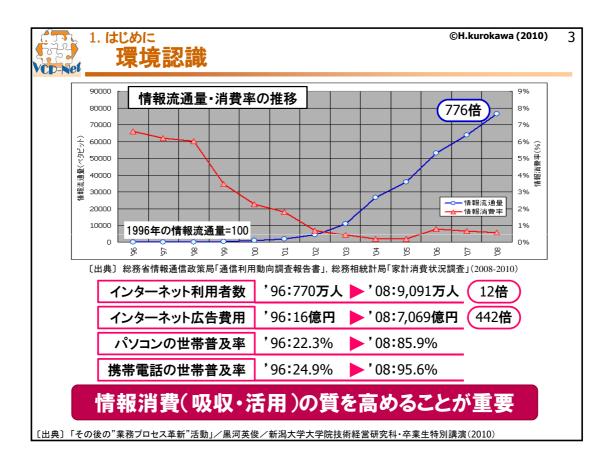
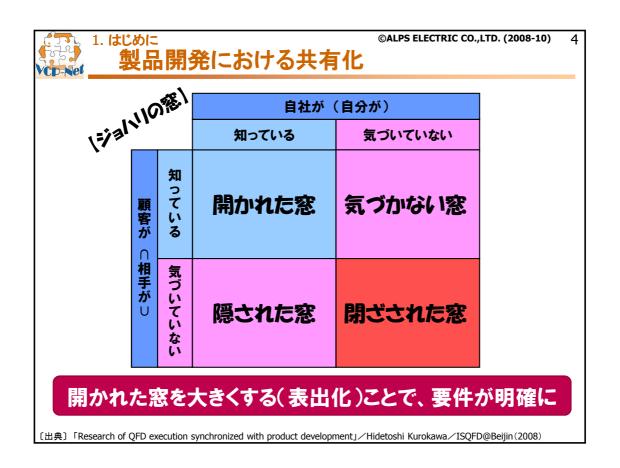


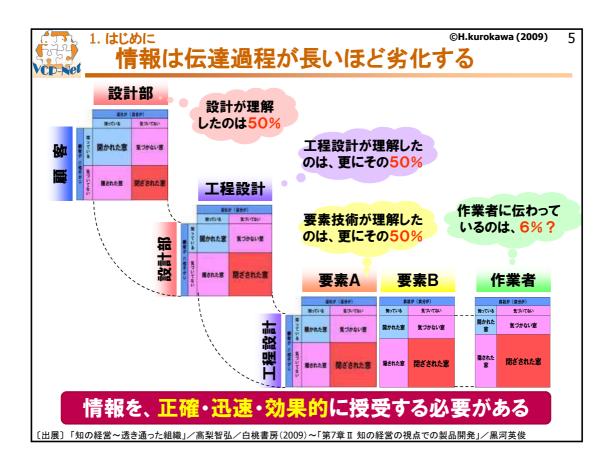
手法の連携による価値創生プロセスの変革

~知の巡りをよくする手法の連携活用~

アルプス電気㈱統計数理研究所


VCP-net(WG1): 黒河 英俊


()	
F324	
Seco	
VCD-Net	


目 次

2

- 1. はじめに
- 2. 手法の整理方法
- 3. 手法の体系化(BOK)
- 4. 既知の手法の連関図
- 5. 手法連携の効能(事例)
- 6. 今後の取り組み

1. はじめに Wisdom Network of Practical Knowledge for Value Creation Process (略称: VCP-Net) 7

価値創生プロセス実践知開発ネットワーク活動

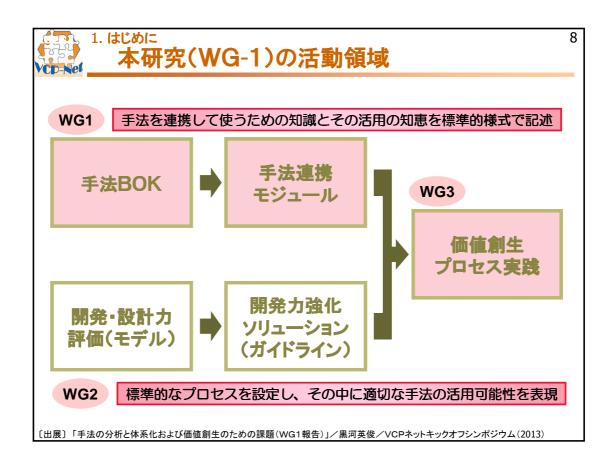
現状認識

- ・進歩,変革,再生の為の知識とスローガンの氾濫
- ・多様な手法や技法に関する知識 の蓄積が進行
- ・90年代まで盛んであった智恵の開示は「知財の壁」で終焉

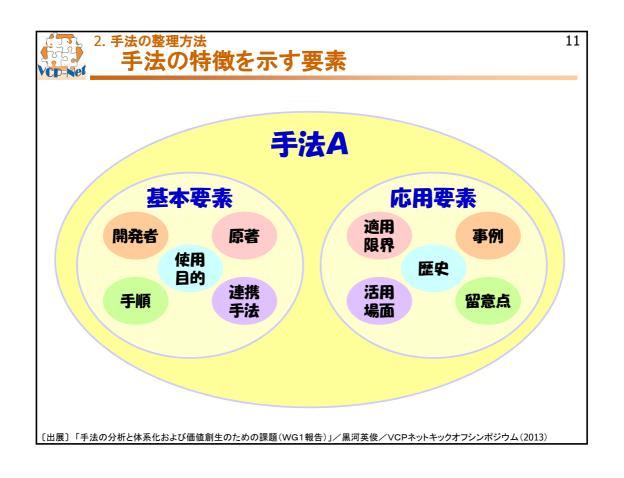
疑 問

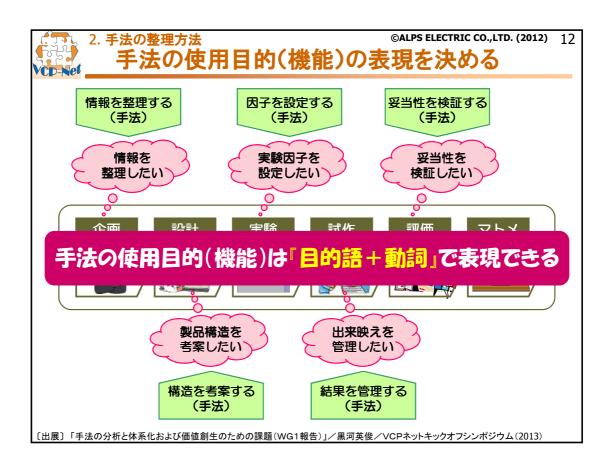
問題(価値のあるコト) の発見・解決への寄与は 如何?

提案


知識の効果的活用のための知恵を蓄積・共有・自律的発展 意欲のある技術者・研究者・行政のネットワークを形成

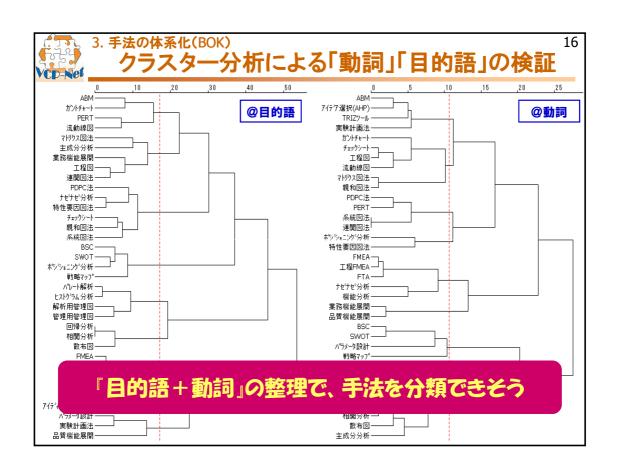
価値創生プロセス実践知開発ネットワーク活動

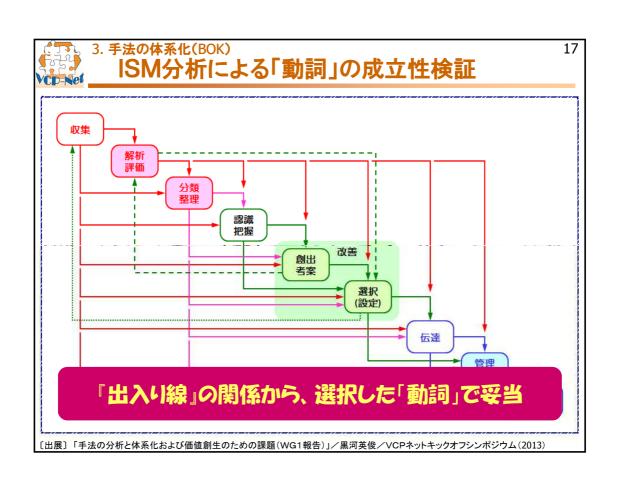

技術・製品の価値を 高めるための手法や 技法適用のプロセスに ついての智恵を一定 の形式で集積する


ネットワーク内の 自由な意見交換により 「知恵の基盤ベース」 として進化させる 手法の知見を蓄積し 単に品質追求するだけ ではなく、価値創生の プロセスにおける明示 的な知識を提供する

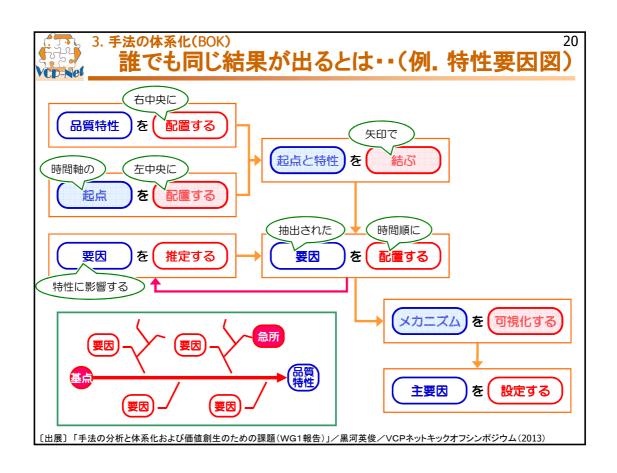
[出展]「価値創生プロセス実践知開発ネットワークキックオフシンポジウム 主旨・活動の経過」/椿広計(2013)・・・図解(黒河英俊)

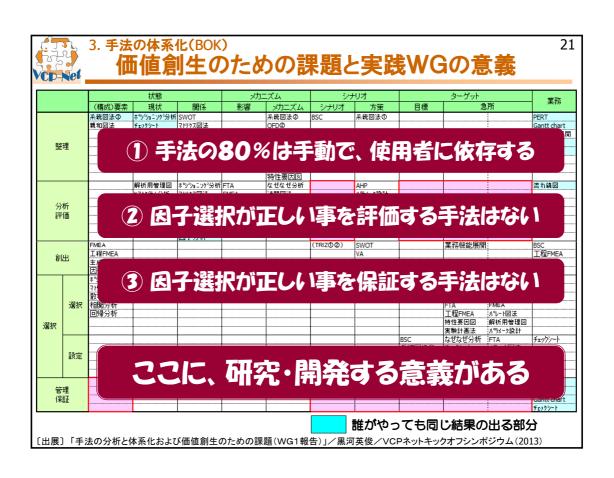
		ます	またがある	のか	?(委員の	Fre	ee抽出)
						—	TTD CALC A
_	実験的回帰分析	2	ペトリネット	3	アンケート調査	4	工程FMEA
	QCストーリー	6	コンジョイント分析	7	焦点発想法	8	V字モデル
	グラフィカルモデリング	10	継続的インテグレーション	11	ファンクションポイント法	12	課題分析技術
13	IPOOF分析	14	SLCP	15	トラブル発想法	16	ABM
	SCAMPER	18	HALT	19	PDPC法	20	稼働分析
21	DEA	22	判別分析	23	BPR	24	特性要因図法
	業務モデリング手法	26	数量化Ⅰ類	27	リソース分析	28	要件定義書
	MFT	30	ワークデザイン法	31	MTA法	32	オープンリソース開発
	分散分析法	34	Kano理論に基づく調査	35	TRIZツール	36	派生型開発
-	モーフォロジカルアナリシス	38	データ分析	39	移行ツリー	40	データモデリング手法
• •	管理用管理図	42	ワイブル分析	43	PPM	_	マーケティング・ミックス
	オブジェクト指向設計法	46	連関図法	47	SMT	48	精密累積法
_	オブジェクト指向開発法	50	対立解消図	51	中沢メソッド	52	XP
	系統図法	54	プレイン・ライティング	55	主観総合評価技術	56	動作経済の原則
	Inovation MG	58	連合作業分析	59	PPM	60	工程図
	リターンマップ	62	ABS	63	サンプリング	64	トレンド分析・予測
	DSM	66	9Windows分析	67	FMEA	68	40の発明原理
	VE	70	RAD	71	ストレスフリー発想法	72	
_	モデル化	74	動作研究	75	マーケティング4P	76_	SIS
77	ビジネスバリューチェーン	78	RT法	79	生物模倣発想法	80	インクリメンタル型開発
	タイミング図	82	PEHST分析	83	テスト駆動型開発	84	FTA
	確率的フロンティア分析	86	機能展開図	87	CRT	88	許容差設計
	BSC(バランス・スコア・カード)	90	リファクタリング	91	P7	92	BMO法
	ポジショニング分析	94	機能別管理	95	アーキテクチャー戦略	96	付加価値分析
-	SSM	98	エニアグラム	99	ハーマンモデル		DOA
	CPA		POA	103		_	スパイラルフロー型開発
	PERT		CMM I	107	T法		主成分分析
09	あんどん方式		ガントチャート	111		112	かんばん方式
13	リーン・シックスシグマ	114	ゴードン法		品質機能展開	116	パラメータ設計
17	7レイヤー構造	118	信頼性手法	119	相関分析	120	ラテラルシンキング法
21	トップQC診断	122	戦略キャンバス分析	123	ABC	124	コラボレーション図
25	ベンチマーキング	126	多次元尺度法	127	制約理論	128	オールペア法
29	シンプレックス	130	ヒストグラム分析	131	回帰分析	132	ブレイン・ストーミング
33	官能評価法	134	クラスター分析	135	ユースケース図	136	U字ライン
37	N7	138	コンボーネント図	139	リアルオプション	140	マーケティング・スパイラル分析
41	逆損益計算書	142	マトリクス図法	143	スパイラル開発	144	オブジェクト指向プログ

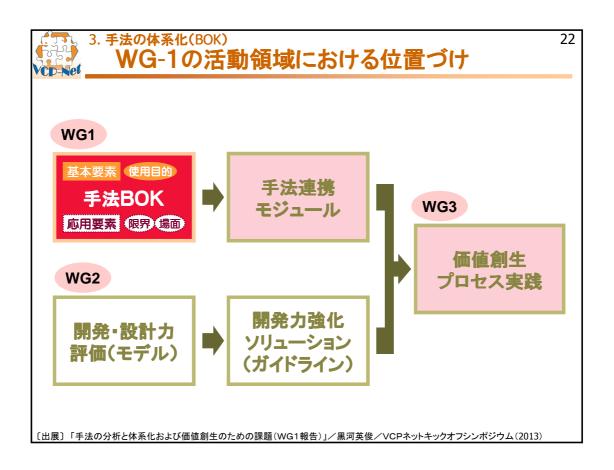




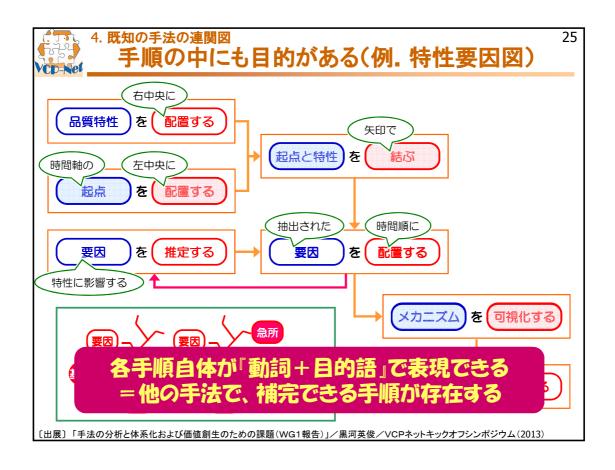
2.	手法の整いろ	_{理方法} いろな	「目的	語」「	獃	詞」が	出て	きました	t
	抽	出された動) iii			抽出され	た目的語		
解析	改善	評価	達成	保証		戦略	計画	問題	強み
分析	改良	測定	開発	展開		市場	プ ロセス	課題	弱み
分解	向上	比較	追求	伝達		シナリオ	業務	原因	脅威
分類	最適化	格付け	探索	決定		Ľ Ў ネス	進行	因果	短所
分割	是正	証明	創出	メンテ		コンセフ゜ト	関係	不具合	特徴
区分	修正	考察	創造	特定		ターケ゛ット	リソース	メカニス゛ム	影響
解明	安定化	拡大	考案	構造化		位置	時間	パフォーマンス	方策
明確化	低減	短縮	企画	育成		目標	期間	効率	解決策
可視化	予測	縮約	開発	活用		テーマ	情報	効力	具体策
視覚化	予想	削除	革新	再現		要素	方法	機能	急所
認識	仮定	除去	選択	近似		システム	状態	マージン	寿命
把握	想定	整理	支援			仕様	現状	ハ゛ラツキ	無駄
管理	設定	整備	ガイド			構成	最先端	レベル	限界
収集	策定	配備	制御			組合せ	網羅性	質	指標

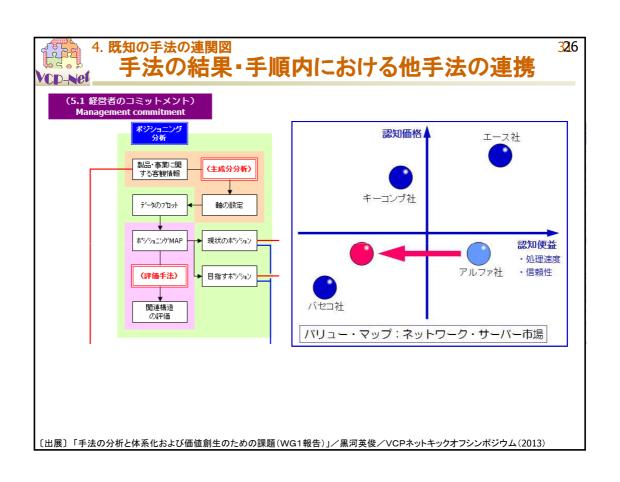


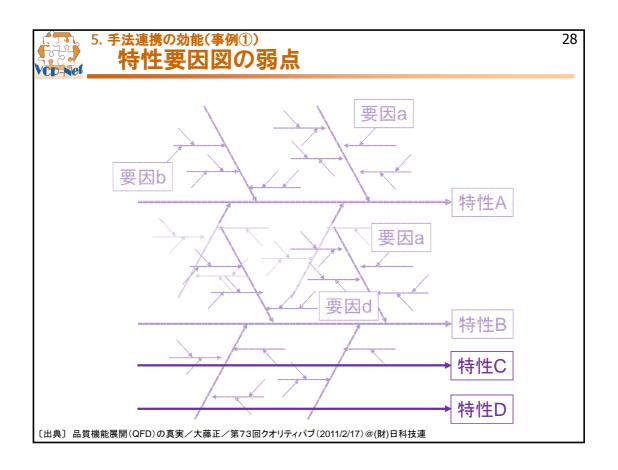


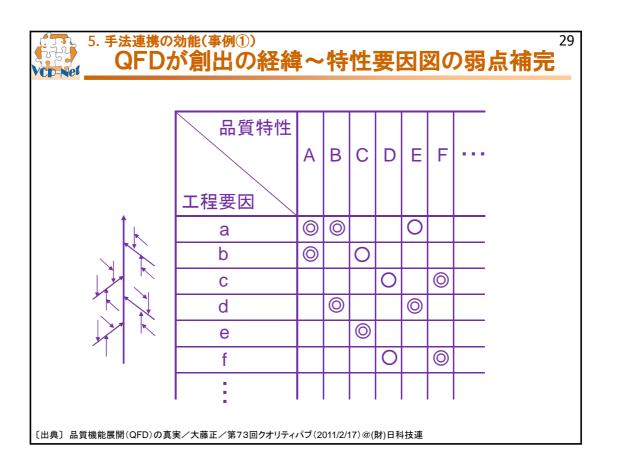


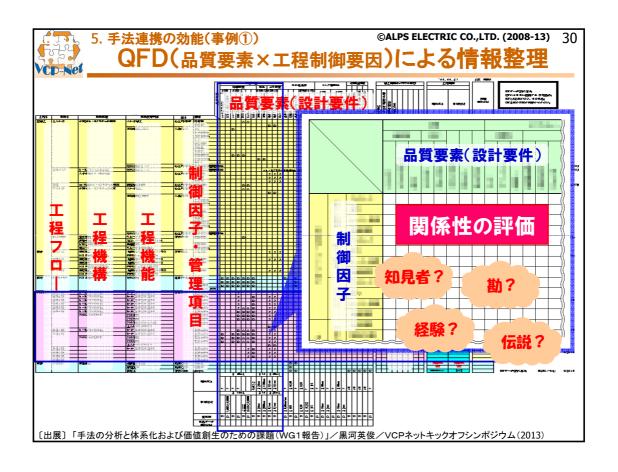
				〔幼ニズムを〕	整理する	[急所を]	選択する		
手法名	特性要因図			工川軽/OC#	ークル活動の生み	. (T.)#1\			
(別名)	Cause and Effe	ect Diagram, Ishikawa Diagram		1月11日本(QC)	一クル/古里川のノ土で	ナレノ利ル			
原著									
目的	改善すべき要素	・システムを選択する。							
I	nput	Processo	Processor						
		①右端の中央に、品質特性を決め、記載す	·る。		品質物	品質特性			
		②左橋から、品質特性(のBOX)に向けて、	矢印と	矢印と結ばれた品質特性					
品質特性,	関連情報	③品質特性に影響する要因(第1レベル)を	第11/2	第1レベルの要因(推定)					
要因(推定)	,プロセス川原	④抽出された要因を、ブロセス(時間)順こ、 並べ、要因(のBOX)から矢印で、中央の	特性事	特性要因図(途中)					
第1レベルの	要因(推定)	⑤③の要因に影響する要因(第2レベル)を	第2レ^	第2レベルの要因(推定)					
第nレベルの	要因(推定)	®アクションが取れるレベルの要因が抽出される迄、@⑤を繰り返す。 第n+1レベルの要因(推定							
整理された	要因	の主要因に印をつける。	主要团	主要因,特性要因図					
特性要因区		⑧作られた図から、改善すべき要素・システムを選択する。 改善すべき要素・システム					4		
				〔現状を〕	評価する	〔急所を〕	選択する		
手法名	control chart (for analysing data)				(American phys			
(別名)	解析用管理図		閉光省	statistician,	the father of s	ther of statistical quality control)			
原著	Economic con	trol of quality of manufactured product. Ne	ew York: D.	Van Nostrand	Company(193	l)			
目的	集められたデータから管理限界を定め、工程における変動傾向、異常を検出する。								

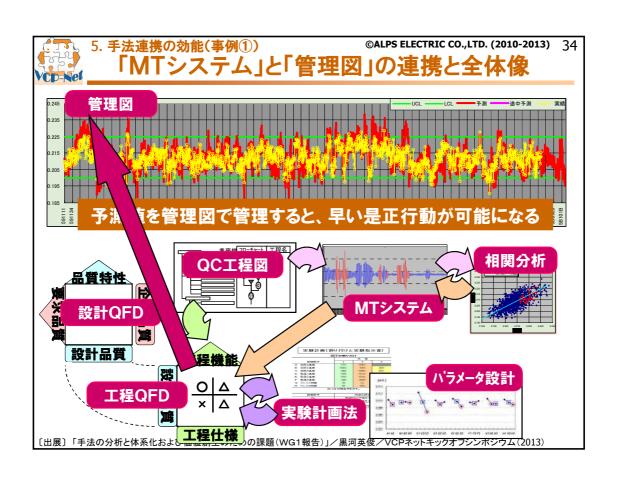


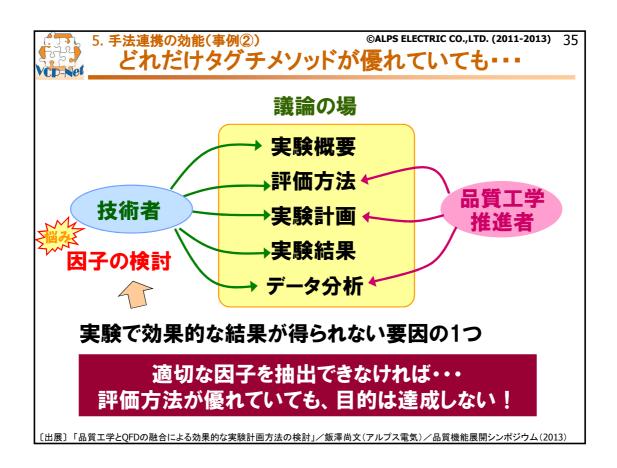


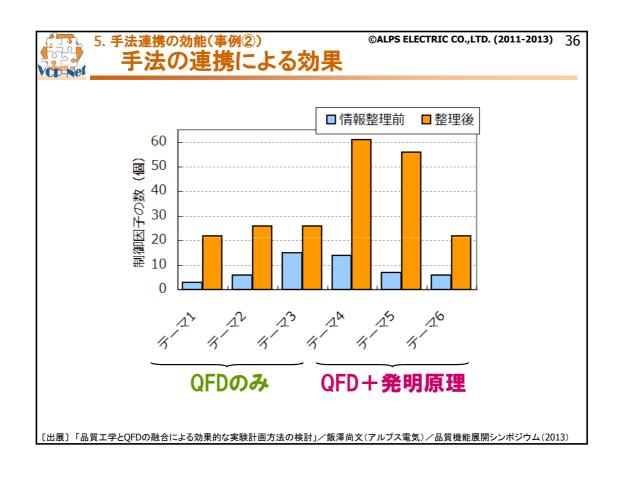


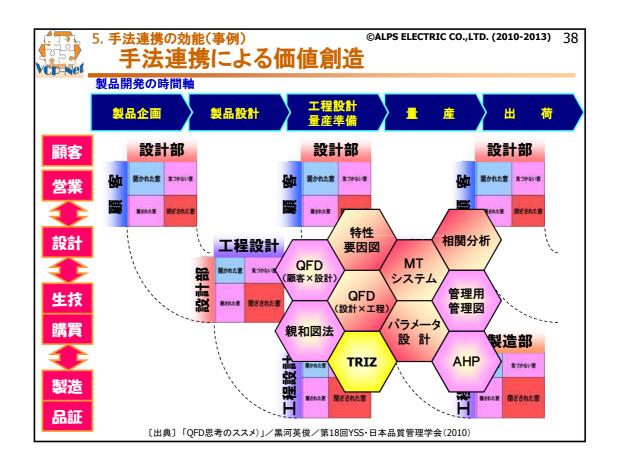


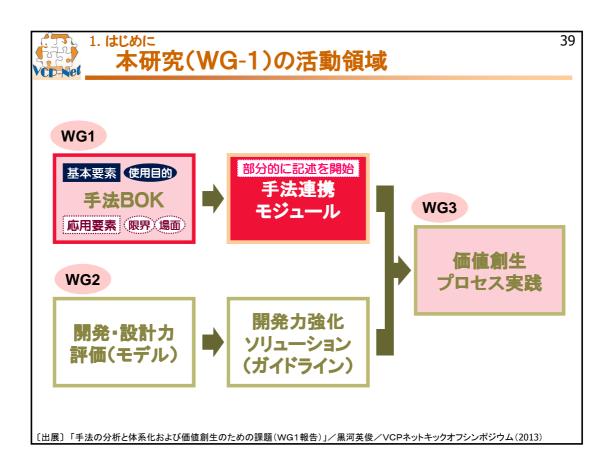


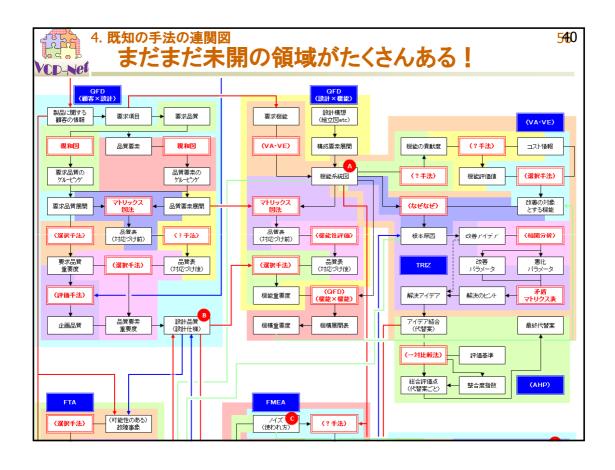


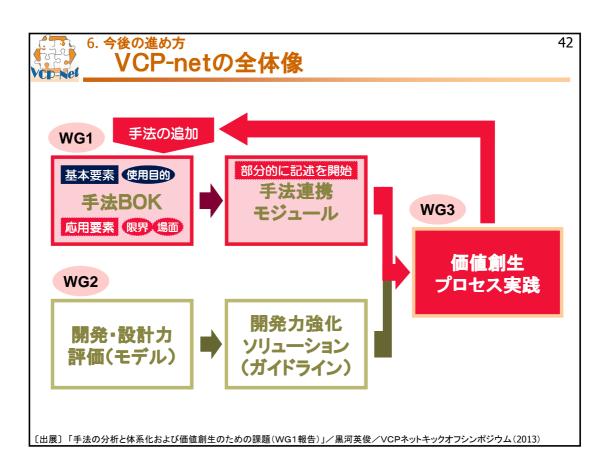












1. はじめに Wisdom Network of Practical Knowledge for Value Creation Process (略称: VCP-Net) 46

価値創生プロセス実践知開発ネットワーク活動

現状認識

- ・進歩,変革,再生の為の知識と スローガンの氾濫
- ・多様な手法や技法に関する知識 の蓄積が進行
- ・90年代まで盛んであった智恵の開示は「知財の壁」で終焉

疑 問

問題(価値のあるコト) の発見・解決への寄与は 如何?

提案

知識の効果的活用のための知恵を蓄積・共有・自律的発展 意欲のある技術者・研究者・行政のネットワークを形成

価値創生プロセス実践知開発ネットワーク活動

技術・製品の価値を 高めるための手法や 技法適用のプロセスに ついての智恵を一定 の形式で集積する

ネットワーク内の 自由な意見交換により 「知恵の基盤ベース」 として進化させる 手法の知見を蓄積し 単に品質追求するだけ ではなく、価値創生の プロセスにおける明示 的な知識を提供する

〔出展〕「価値創生プロセス実践知開発ネットワークキックオフシンポジウム 主旨・活動の経過」/椿広計(2013)・・・図解(黒河英俊)

47

御静聴、ありがとうございました

