
“Forecasting the geomagnetic secular variation by machine learning”
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Conclusions

lWe conducted the hindcasts of GSV for Epochs 2005 and 2010 using ESN, one of the simplest 
reservoir computing methods in machine learning. In doing so, we adopted the COV-OBS (Gillet 
et al., 2013) geomagnetic field model since 1840 as ‘observation’.

lESN turned out so effective that it was able to reproduce the short-term GSV without longer 
training data with a typical 10-y mean prediction error of less than 100 nT.

l It was found that the data covariance may have a large impact in forecasting GSVs.
l It, however, may not be possible to forecast occurrence of geomagnetic jerks even by the 

machine learning method used here. This needs further elaboration such as inclusion of Length of 
Day in input data.

Echo State Network (ESN) Method

Echo State Network is a variant of reservoir computing applicable to machine learning for time-series prediction.

The so-called geomagnetic secular variation (GSV) is, at a glance, dominated by smooth and gradual changes 
in the vector geomagnetic field. However, it still contains highly non-linear temporal variations such as the 
geomagnetic jerk characterized by abrupt changes in the first time derivatives of, especially, the eastward 
geomagnetic components. Presence of those non-linear variations makes the prediction of our planet's 
magnetic field difficult enough to force the geomagnetic research communities revise their global geomagnetic 
field models unexpectedly urgently (e.g., Witze, 2019).

Conventional prediction of GSV has been made empirically taking advantage of the linearity of its principal 
element. However, this doesn't work especially when the aforementioned geomagnetic jerks occur. To 
circumvent this, the number of GSV predictions using a combination of geodynamosimulation and data 
assimilation is increasing recently (e.g., Minami et al., 2020). The combination turned out effective for
non-linear predictions of GSV except for its computer-intensive nature in both geodynamosimulation and data 
assimilation. Namely, it is not until working with an enough number of ensemble members (each of which is a 
result of a fairly long geodynamorun) that data assimilation for GSV forecast becomes effective.

On the other hand, machine learning is an emerging technique, which has a promising potential of 
application to highly non-linear processes such as the geomagnetic jerks. For example, Koopman Mode 
Decomposition is a variant of machine learning methods based on a decomposition of observed time-series into 
multiple modes, while the key procedure of Recurrent Neural Network is feedback of various internal states to 
the present status. In this study, we adopted ESN (e.g., Nakano and Kataoka, 2022) to perform hindcasts of 
short-term GSVs from 2005 and 2010 using a geomagnetic field model (COV-OBS; Gillet et al., 2013) stemming 
from 1840 because ESN is known as cost-effective reservoir computing and works even with relatively few 
training data.

Discussion I:

Data covariance does affect fits of the machine learning method to the observation.

The objective function, J, of this study to determine the matrix G containing Wout is given by                             , where sk is the so-called 
‘data covariance’. One interest is how the data covariance affects the result. The figure above shows it in terms of fits to two specific 
trained differential Gauss coefficients, Dg10 and Dg21, from 1860 through 2005. Although constant sk‘s seem to follow COV-OBS (the 
blue solid line) much better, it does not necessarily mean that the variable sk‘s are worse. Because older data are likely to have larger 
observation errors, it is rather desired to minimize the effect of older data with large errors. ESN seems indifferent to data older thatn
1960, whereas it neatly follows the differential COV-OBS model for the latest years (1995 and onwards).

ESNによるΔg10とΔg21の出力
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2 Method67

Following many models of the Earth’s magnetic field, including the IGRF model,
we represent the magnetic field B with a scalar potential V as

B = −∇V. (1)

The potential V is expanded into spherical harmonics:

V (r, θ,φ, t) = a
N∑

n=1

n∑

m=0

(a
r

)n+1
[gmn (t) cosmφ+ hm

n (t) sinmφ]Pm
n (cos θ) (2)

where a denotes the Earth’s mean radius. The SV of the geomagnetic field is repre-68

sented as the first time derivatives of the Gauss coefficients gmn (t) and hm
n (t).69

We model their temporal variations by the ESN model. The state of the sys-70

tem at time tk is represented by state vector xk. The number of state variables Mx71

is set to 1000 in this study. At time step k, the i-th element of xk, xk,i, is updated72

as follows:73

xk,i = (1− ξ)xk−1,i + ξ tanh
(
wT

i xk−1 + uT
i zk + ηi

)
(3)74

where zk denotes the input vector, wi is a weight vector for connecting among the75

state variables, ui is a weight vector for connecting with the input variables, and ξ76

is the leakage rate (Jaeger et al., 2007; Lukoševičius, 2012). We fixed the value of ξ77

at 0.5 in this study. The weights wi and ui are given in advance and are fixed. We78

set 90% of the weights {wi} and {ui} (randomly chosen) to zero. The values of the79

remaining non-zero elements of ui are drawn randomly from a normal distribution80

with mean 0 and standard deviation σu. The standard deviation σu is set to adjust81

the range of the input variables z as described later. The values of the non-zero ele-82

ments of wi are also drawn from a normal distribution. The weights {wi} are then83

rescaled such that the maximum singular value of the weight matrix, which is de-84

fined as85

W = (w1 w2 · · ·wMx) , (4)86

becomes 0.99. This rescaling is applied to satisfy the so-called “echo state property”87

which guarantees that the state of the ESN is not affected by distant past inputs.88

The output of the ESN at time tk, yk, is then obtained from xk as follows:89

yk = ΓTxk, (5)90

where Γ denotes the weight matrix. The output yk corresponds to a prediction of91

the observation at time tk.92

Denoting the observation at time tk as dk, the matrix Γ is determined by mini-93

mizing the following objective function:94

J =
K∑

k=1

∥∥dk − ΓTxk

∥∥2
2

σ2
k

+
‖Γ‖2F
λ2

, (6)95

where the second term on the right-hand side of this equation is a regularization96

term to avoid overfitting and ‖Γ‖F denotes the Frobenius norm of the matrix Γ.97

The parameters σk and λ correspond to the scales of uncertainties for the observa-98

tions and constraints, respectively. The values of the parameters used in this study99

are described in the next section. Decomposing dk and Γ as dk =
(
dk,1, . . . , dk,My

)
100

and Γ =
(
γ1, . . . ,γMy

)
, respectively, Eq. (6) can be rewritten as:101

J =

My∑

i=1

[
K∑

k=1

(
dk,i − γT

i xk

)2

σ2
k

+
‖γi‖22
λ2

]
. (7)102

–3–
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The objective function of this study:Results

ESN was found so effective for short-term forecast of GSV that it didn't need long training data.

Table 1. Hindcast errors of ESN as a function of training data length and time resolution of the COV-OBS geomagnetic field model.

Table 1 clearly shows that ESN doesn't require longer training data for prediction of short-term GSVs of our 
planet's main magnetic field. Rather, the shorter training data of 105 yrsyielded better accuracy. The dependence 
of time resolution, i.e., the total number of data, is weak enough to give the best estimates by a combination of 
shorter training data  and half a year resolution. The improvement in estimation error sums up to 20 to 30 %.

Two hindcast results

The panel above compares the hindcast results for Epoch 2005 (Left) and 2010 (Right).  
Although overall forecasts are fairly good for both epochs, ESN seems to have failed to follow 
abrupt changes in the internal Gauss coefficients (e.g., g22 at around 2005).  The hindcast, 
therefore, does not necessarily guarantee the flexibility of ESN to reproduce non-linear temporal 
variations such as the ‘geomagnetic jerks’.

Discussion II:

Smaller forecast errors for higher-degree Gauss coefficients

The degree-dependent forecast error:
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years, while higher coefficients change increasingly over shorter time. This means202

that the prediction errors by ESN are dependent on harmonic degrees. Figure 5203

shows the temporal evolution of
√

dPn,k for each n from 2006. It is evident from the204

figure that the prediction errors,
√
dPn,k, are smaller for higher degrees, though the205

errors themselves increase as time passes from the starting year (2005 in this case).206

10-1

100

101

102

Figure 5.
√

dPn,k of each degree n for the prediction with ESN.

4 Discussion207

To predict the evolution of a dynamical system for general cases, it is necessary208

to model the global structure of the trajectory in its phase space. To attain this pur-209

pose with data-driven approaches such as machine learning techniques, a large num-210

ber of data which cover all possible cases are required. This is not possible for the211

geodynamo system because the time scale of the observation is much shorter than212

the convection time scale of the geodynamo as well as the large size state vector for213

each case with elements of the order of 100 at least. On the other hand, the result214

of the hindcasts presented in this article demonstrates that the ESN is potentially215

effective for predicting SV for several years. This could be interpreted that the ESN216

learn a local structure of the trajectory in the vicinity of the current state. Indeed,217

the ESN can well predict the SV with the training data for a shorter period. Figure218

6 compares
√
dPk between the ESNs trained with the data from 1860, from 1920,219

and from 1960. The performances were very similar even if the length of the train-220

ing data were shortened. This suggests that the ESN uses the characteristics of the221

recent variations of the geomagnetic main field for predicting SV when the observa-222

tions were more reliable and the uncertainties were small.223

There have been several previous studies for prediction of SV by geodynamo-224

based data assimilation using ensemble Kalman filters (Aubert, 2015; Sanchez et225

al., 2020) or rather deterministic forecast based on sequential solutions of the mag-226

netic induction equation incorporating both core surface flow and magnetic diffu-227

sion (Metman et al., 2020). The former two data assimilation studies needed to con-228

strain state vectors in the Earth’s liquid outer core of 106 elements or more by the229

very limited observation (or geomagnetic field models such as COV-OBS) on the230

Earth’s surface. Moreover, they had to work with 100 to 1000 ensemble members at231

the same time, which inevitably led to prohibitive computational costs. The deter-232

ministic approach by Metman et al. required less computer resources, whereas their233

prediction errors were dependent on the length of the model fitting window. On the234

other hand, the ESN method employed here achieved the prediction errors compa-235

rable to those methods as shown in Figure 3 and the prediction errors are likely to236

be robust to the length of the training data period. The ESN calculation was light237

–9–
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3 Hindcast experiments136

We conduct hindcast experiments to reproduce the temporal evolution of the137

geomagnetic main field after training the ESN using the COV-OBS.x2 model. The138

COV-OBS.x2 model gives the temporal evolution of the Gauss coefficients of the139

scalar potential V as an ensemble of field models sampled from a continuous stochas-140

tic model. Here we obtain the Gauss coefficients for every year and the temporal141

evolution of ∆gmn (tk) and ∆hm
n (tk) for each year is modelled with the ESN. When142

∆gmn (tk) and ∆hm
n (tk) are obtained as the temporal difference for a 1-year inter-143

val, their typical scale is of the order of 10 nT. The ESN requires inputs for a suf-144

ficient number of time steps before its output can be compared with the observa-145

tions. Hence, we use the observations of ∆gmn (tk) and ∆hm
n (tk) from 1840 to 1860146

for spin-up and train the ESN using the observations from 1861 to 2005. We then147

predict ∆gmn (tk) and ∆hm
n (tk) from 2006 to 2015 and obtain the hindcast of gmn (tk)148

and hm
n (tk) accordingly.149

To determine qi using Eq. (12), the parameters σk,i and λ must be given in150

advance. The parameter σk,i corresponds to the uncertainty of the observation dk,i151

and it was determined by the variance for each coefficient gmn (tk) and hm
n (tk) given152

by the COV-OBS.x2 model. The parameter λ was determined by the maximiza-153

tion of the marginal likelihood because the minimization of Ji can be regarded as154

a Bayesian estimation problem of dk,i and λi can be regarded as the variance of the155

Gaussian prior distribution for qi.156

First, we set the start time of the hindcast experiments to be 2005 and the157

ESN was trained with the COV-OBS.x2 model until 2005. The parameter λ was158

determined by the maximization of the marginal likelihood, which is often used in159

Bayesian estimation (e.g., Morris, 1983; Casella, 1985), because the minimization160

of Ji can be regarded as a Bayesian estimation problem with a Gaussian prior for161

qi. Figure 1 shows the results of the hindcast for g01 , g
1
1 , h

1
1, g

0
2 , g

1
2 , h

1
2, g

2
2 , h

2
2, and162

g03 . In each panel, the blue line indicates results of the hindcast conducted with163

the ESN, the red line indicates the COV-OBS.x2, and the green line indicates the164

prediction of the 10th-generation IGRF (IGRF-10) model (Maus et al., 2005). The165

COV-OBS.x2 model is regarded as the actual SV. Since the IGRF-10 was released in166

2005, the prediction by the IGRF-10 is also shown as a benchmark of the prediction167

from 2005. The ESN provided a better predictions for g01 , g
1
1 , g

0
2 , g

1
2 , h

2
2. Although168

the prediction with the ESN deviated from the actual SV as described by the COV-169

OBS.x2 for g22 and g03 of which the trends changed around 2005, the performance of170

the ESN was comparable to or better than that of the IGRF-10 even for those co-171

efficients. This result suggests that the ESN has significant potential for predicting172

SV with satisfactory accuracy. We also examined the performance for the case when173

the start time of the hindcast was set to be 2010. Figure 2 shows the result of the174

hindcast initiated in 2010 with the blue line. The COV-OBS.x2 model and the 11th175

generation IGRF (IGRF-11) model (Finlay et al., 2010) are also indicated with the176

red and green lines, respectively, for reference. Although the IGRF-11 model well177

predicted the SV from 2010, the ESN predicted the SV better than the IGRF-11178

model.179

We also evaluate the accuracy of the prediction with the root-mean-square180

(RMS) differences (Whaler & Beggan, 2017; Minami et al., 2020):181

√
dPn,k =

√√√√
n∑

m=0

(n+ 1)
[(
gmn,p(tk)− gmn,o(tk)

)2
+
(
hm
n,p(tk)− hm

n,o(tk)
)2]

, (15)182

√
dPk =

√√√√
N∑

n=1

dPn,k, (16)183

184
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It’s quite 
natural that 
the forecast 
errors 
increase with 
time.  
However, they 
do possess 
degree-
dependence 
because the 
higher degree 
Gauss 
coefficients 
vary more 
rapidly, which 
does appear 
even in short 
teaching data.
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