“Forecasting the geomagnetic secular variation by machine learning”
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Echo State Network is a variant of reservoir computing applicable to machine leaming for time-series prediction.
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The so-called geomagnetic secular variation (GSV) s, at a glance, dominated by smooth and gradual changes
in the vector geomagnetic field. However, it still contains highly non-inear temporal variations such as the
geomagnetic jerk characterized by abrupt changes in the first time derivatives of, especially, the eastward
geomagnetic components. Presence of those non-inear variations makes the prediction of our planet's
magnetic field difficult enough to force the geomagnetic research communities revise their global geomagnetic
field models unexpectedly urgently (e.g., Witze, 2019).

Conventional prediction of GSV has been made empirically taking advantage of the linearity of its principal
element. However, this doesn't work especially when the aforementioned geomagneticjerks occur. To
circumvent this, the number of GSV predictions using a combination of geodynamo simulation and data
assimilation is increasing recently (e.g., Minami et al., 2020). The combination tumed out effective for
norHinear predictions of GSV except for its computer-intensive nature in both geodynamo simulation and data
assimilation. Namely, it is not until working with an enough number of ensemble members (each of whichis a
result of a fairly long geodynamo run) that data assimilation for GSV forecast becomes effective.

On the other hand, machine leaming is an emerging technique, which has a promising potential of
application to highly non-inear processes such as the geomagnetic jerks. For example, Koopman Mode
Decomposition is a variant of machine leaming methods based on a decomposition of observed time-series into
multtiple modes, while the key procedure of Recurrent Neural Network is feedback of various intemal states to
the present status. In this study, we adopted ESN (e.g., Nakano and Kataoka, 2022) to perform hindcasts of
shortterm GSVs from 2005 and 2010 using a geomagnetic field model (COV-OBS; Gillet et al., 2013) stemming
from 1840 because ESN is known as cost-effective reservoir computing and works even with reiahve few
training data.

Results

ESN was found so effective for short-term forecast of GSV that it didn't need long training data

Table 1. Hindcast errors of ESN as a function of training data length and time resolution of the COV-OBS geomagnetic field model.
Length of training data | 1840 - 2005 1840 - 2005 1840 -2005 ' 1900 - 2005 1900 - 2005 1900 2005
Time ion [year] 0.25
Estimation Error [nT]
(10-y average)

95 105 105 74 81 102

Estimation Error [nT]

(After 10 yrs) 238 242 238 186 171 227

Table 1 dlearly shows that ESN doesn't require longer training data for prediction of short-term GSVs of our
planet's main magnetic field. Rather, the shorter training data of 105 yrs yielded better accuracy. The dependence
of time resolution, i.e., the total number of data, is weak enough to give the best estimates by a combination of
shorter training data and half a year resolution. The improvement in estimation error sums up to 20to 30 %.

Two hindcast results
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The panel above compares the hindcast results for Epoch 2005 (Left) and 2010 (Right).
Although overall forecasts are fairly good for both epochs, ESN seems to have failed to follow

abrupt changes in the internal Gauss coefficients (e.g., g22 at around 2005). The hindcast,
therefore, does not necessarily guarantee the flexibility of ESN to reproduce non-linear temporal

variations such as the ‘geomagnetic jerks'.

The objective function of this study: |/

Data covariance does affect fits of the machine leaming method to the observation.
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, J, ofthis study o trix L containing el 1 where okis the so-called
‘data covariance’. One interest s how the data cts the result The f in terms of ftsto two specific
trained differential Gauss coefiients, Ag10 and Ag21, fom 1860 through 2005, Although constant o's seem to follow COV-OBS (the
blue soid ine) much beter, it does not necessarily mean that the variable os are worse. Because older data are ikely to have larger
, itis rather desired to minimize the effect of older data with large errors. ESN seems indifferent to data older thatn

1960, whereas itneatly follows the difierential COV-OBS model for the latest years (1995 and onwards).
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Conclusions

® \We conducted the hindcasts of GSV for Epochs 2005 and 2010 using ESN, one of the simplest
reservoir computing methods in machine learning. In doing so, we adopted the COV-OBS (Gillet
etal., 201e<} geomagnetic field model since 1840 as ‘observation’.

® ESN turned out so effective that it was able to reproduce the short-term GSV without longer
training data with a typical 10-y mean prediction error of less than 100 nT.

® |t was found that the data covariance may have a large impact in forecasting GSVs.

@ It, however, may not be possible to forecast occurrence of geomagnetic jerks even by the
machine learning method used here. This needs further elaboration such as inclusion of Length of
Day in input data.
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