
“Forecasting the geomagnetic secular variation by machine learning”

D
at

a 
Sh

ow
ca

se
(O

ld
 M

ag
ne

tic
 S

to
rm

s)

Acknowledgements
         This study is supported by 
ROIS-DS-JOINT Program #008RP2024 of 
Research Organization of Information and 
Systems, Japan.

H. Toh, S. Sato [Division of Earth & Planetary Sciences, Kyoto University] &
S. Nakano [The Institute of Statistical Mathematics; Center for Data Assimilation Research and Applications, ROIS-DS] 

REFERENCES
 Gillet, N., Gerick, F., Jault, D., Schwaiger, T., Aubert, J., & Istas, M. (2022). Satellite magnetic data reveal 

interannual waves in Earth's core. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE 
UNITED STATES OF AMERICA, 119(13). doi:10.1073/pnas.2115258119

 HULOT, G., & LEMOUEL, J. (1994). A STATISTICAL APPROACH TO THE EARTHS MAIN MAGNETIC-FIELD. 
PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 82, 167-183.

 Minami, T. et al. (2020). A candidate secular variation model for IGRF-13 based on MHD dynamo simulation and 
4DEnVar data assimilation. EARTH PLANETS AND SPACE, 72. doi:10.1186/s40623-020-01253-8

 PUSKORIUS, G., & FELDKAMP, L. (1994). NEUROCONTROL OF NONLINEAR DYNAMICAL-SYSTEMS WITH 
KALMAN FILTER TRAINED RECURRENT NETWORKS. IEEE TRANSACTIONS ON NEURAL NETWORKS, 5, 
279-297.

 Ropp, G., & Lesur. (2023). Mid-latitude and equatorial core surface flow variations derived from observatory and 
satellite magnetic data. GEOPHYSICAL JOURNAL INTERNATIONAL, 234, 1191-1204. doi:10.1093/gji/ggad113

Conclusions
 In this study, we utilized a new recurrent neural network to forecast the geomagnetic secular 

variation for the period from 2025 through 2030, employing an extended Kalman filter algorithm for 
training so as to give sufficient protection against overfitting problems.

Our new machine learning method showed a better performance than our previous data 
assimilation method for predicting the short-term geomagnetic secular variation at Epoch 2020.

We found that our neural network method trained with geomagnetic secular acceleration time 
series (viz., the second time derivatives of original Gauss coefficients) outperformed any other time 
derivatives (up to the fifth from the zeroth time derivatives), which implies that our machine learning 
method may have detected the secular acceleration variation due to Magneto-Coriolis waves in the 
Earth’s outer core.

New Recurrent Neural Network Method with an Extended Kalman Filter as Training Interface

Recurrent Neural Network realizes time-series prediction by recursively updating weights (W(*)’s) among neurons.

⇧ Our machine learning method is based on an Elman  Extended Kalman Filter was used to form an 
network, which is a specific type of RNN that includes  interface between RNN and observation yO  
recurrent connections in the hidden layer 𝐡𝐡(t). In general, with data covariance C.
each node in a neural network mimics the behavior of a
human perceptron by calculating a weighted sum 𝑠𝑠 of
its inputs 𝑣𝑣𝑖𝑖 and applying an activation function 𝜙𝜙. 

The data learning procedure employed by our RNN ⇨
is based on the extended Kalman filter (EKF) algorithm
for parameter estimation, as developed by Puskorius 
and Feldkamp (1994).  The state vector, 𝐰𝐰, consists of 
the components of trainable parameters in RNNs.

Unlike conventional backpropagation methods, the EKF
dynamically updates the RNN weights by incorporating
error covariance from training data, effectively mitigating
overfitting while preserving computational efficiency.
However, like any other neural network methods, our
method is not free from initial-value problems, either.  
We had to make a grid search for the optimized initial 
state vector, 𝐰𝐰0, by changing the number of nodes, Dh,
in the hidden layer, 𝐡𝐡(t).  The grid search finally yielded
a combination of the best Dh = 34 and the minimum
variance of the estimated geomagnetic secular
variation (SV) at Epoch 2020 for all 5-digit (25) initial 
vectors tried.

Discussion I:

Machine learning can detect periodic variations in the geomagnetic field.
Results

EKF-RN was found more effective for short-term forecast of SV than BP, 4DEnVar or IGRF.

Table 1. Summary of the hindcast experiments conducted in this study.

Table 1 clearly shows that EKF-RNN is superior to any other methods tried here (viz., back propagation, data 
assimilation and linear forecast by IGRF) in predicting short-term (i.e., ~ 5 yrs) SVs of our planet's main magnetic 
field.  One strong point of our method is a better protection against overfitting problems in back propagation 
methods.

Hindcast results
The left panels show 4 time-

series of Gauss coefficients for 
example. We used the MCM2024 
field model by Ropp and Lesur 
(2023) as data (the black line), 
while training our EKF-RNN 
method from 2005 through 2015
to yield the red line.  The beige 
envelope shows the range within 
± 1 standard deviation.  The 
yellow zone is our hindcast period, 
i.e., Year 2015 through 2020.
 Because our new RNN method 
shows sufficient forecast ability for 
short-term SVs, we conducted SV 
forecast for Epoch 2025, which 
has already been submitted to 
IAGA IGRF-14 Task Force as a 
candidate SV model.

Discussion II:

Smaller forecast errors for higher-degree Gauss coefficients
It is quite natural that 
the forecast errors 
increase with time.  
However, they do 
possess degree-
dependence because 
the higher degree 
Gauss coefficients vary 
more rapidly as shown 
in the right panels  
(except for Degree 2 in 
this case).  This 
reflects the fact that 
core magnetic fields of 
short wavelength tend 
to have short time 
constants for their 
variations (Hulot and 
LeMouel, 1994).

In this study, we utilized an RNN to forecast geomagnetic SV (Table 2) for the period from 2025 to 2030, employing the EKF algorithm for training. 
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Our prediction for Gauss coefficients 
ends up with large forecast errors 
since we have worked with the 
second time derivatives rather than 
the Gauss coefficients themselves.  
However, it turned out that this is a 
necessary requirement by the data 
(i.e., the MCM2024 model) because 
the data contained a significant 
periodicity in its second time 
derivatives as shown in the left panel.  
Even though we have tried a variety 
of time derivative (zeroth through the 
fifith), the second time derivative gave 
us the best performance.  The secular 
acceleration variation may be related 
to Magneto-Coriolis wave in the 
Earth’s outer core (Gillet et al., 2022).

Prediction of the secular acceleration energy at the 
Earth’s surface by our EKF-RNN method. 

Temporal evolution of the gap between observations (g(data)) and RNN predictions (g(RNN)) in 
terms of core field root mean energy (√dP). (b) Degree dependence of the gap (√(dPl )).
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